

Opportunities for Neuromorphic Computing Co-Processors

Katie Schuman

Department of Electrical Engineering and Computer Science, University of Tennessee

ScalAH22 Workshop, November 2022

Opportunities for Neuromorphic Computing Co-Processors

Katie Schuman
Department of Electrical Engineering and
Computer Science

TENNESSEE KNOXVILLE

TENNLab

- Four Pls at UTK:
 - Dr. Ahmed Aziz (Devices)
 - Dr. Garrett Rose (Architectures and Devices)
 - Dr. Jim Plank (Software and Applications)
 - Dr. Katie Schuman (Algorithms and Applications)
- Affiliated faculty at:
 - SUNY Polytechnic
 - George Mason University
 - University of Mississippi
 - Florida International University
 - Oak Ridge National Laboratory
- Since 2015:
 - 12 Master's and 7 PhD graduates
 - Alumni at Tesla, Garmin, Intel, Cisco, Amazon, Micron, Tl, Microsoft, Google, Facebook, SalesForce

https://neuromorphic.eecs.utk.edu/

Why should you care about novel braininspired computer architectures?

Looming End of Moore's Law

(And the end of Dennard scaling)

Artificial Intelligence and Machine Learning

Rise of the Internet of Things

Neural Hardware and Neuromorphic Computing

- Well-suited to existing algorithms
- Fast computation or low power
- Currently deployed in cloud or mobile devices

Neural Hardware and Neuromorphic Computing

Accelerates traditional neural network and deep learning computation

- Well-suited to existing algorithms
- Fast computation or low power
- Currently deployed in cloud or mobile devices

Neuromorphic Computing

Implements
spiking recurrent
neural network
computation and
can be suitable for
neuroscience
simulation

- Significant promise for future algorithmic development
- Fast computation and low power
- Still in development

- Time component on neurons and synapses
- More complex network structures than feed-forward, but typically not fully connected

- Temporal input
- Temporal output

Spiking Neural Networks

Spiking Neural Networks

Spiking Neural Networks

What does a neuromorphic computer look like?

Extremely Low Power

Event Driven

Examples of Neuromorphic Systems

Neuroscience-Driven

SpiNNaker
University of
Manchester

BrainScaleS

Heidelberg

University

Computation-Driven

TrueNorth IBM

Loihi Intel

Image Sources:

SpiNNaker: https://www.researchgate.net/figure/A-SpiNNaker-board-with-48-chips-SpiNN-5 fig1 301559712

BrainScaleS: https://www.kip.uni-heidelberg.de/vision/outreach/images/

TrueNorth: https://www.top500.org/news/ibm-finds-killer-app-for-truenorth-neuromorphic-chip/ Loihi: https://www.top500.org/news/ibm-finds-killer-app-for-truenorth-neuromorphic-chip/ Loihi: https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html

Neuromorphic Hardware Research

Neuromorphic device research includes metal-oxide memristors, superconducting optoelectronics, and biomimetic devices

G. Chakma, et al, "Memristive Mixed-Signal Neuromorphic Systems: Energy-Efficient Learning at the Circuit-Level," in *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 8, no. 1, pp. 125-136, March 2018.

Buckley, Sonia, et al. "Design of superconducting optoelectronic networks for neuromorphic computing." In 2018 IEEE International Conference on Rebooting Computing (ICRC), pp. 1-7. IEEE, 2018.

Najem, Joseph S., et al. "Memristive ion channel-doped biomembranes as synaptic mimics." *ACS nano* 12, no. 5 (2018): 4702-4711.

Neuromorphic Computing "Stack"

Applications

Algorithms

System Software and Communications

System Architecture/Organization

Microarchitecture

Devices

Materials

My Research

Influences

How do you program a neuromorphic computer?

Spiking Neural Networks!

"Programming" via Spiking Neural Networks

Algorithms: Back-Propagation-Like

Approaches

- Dense connectivity
- Algorithm adaptations for:
 - Non-differentiability of spiking neurons
 - Low precision weights
 - Non-standard approach to delays

Algorithms: Back-Propagation-Like

Approaches

- Dense connectivity
- Algorithm adaptations for:
 - Non-differentiability of spiking neurons
 - Low precision weights
 - Non-standard approach to delays

Key Advantage:
Decades of knowledge about
traditional ANNs

Algorithms: Back-Propagation-Like

Approaches

- Dense connectivity
- Algorithm adaptations for:
 - Non-differentiability of spiking neurons
 - Low precision weights
 - Non-standard approach to delays

Key Advantage:
Decades of knowledge about
traditional ANNs

Key Disadvantage:
Doesn't work natively on many
features of SNNs

Algorithms: Synaptic Plasticity

Algorithms: Synaptic Plasticity

Key Advantage:
Biologically-inspired and
unsupervised

Algorithms: Synaptic Plasticity

EONS: Evolutionary Optimization for Neuromorphic Systems

Why Evolutionary Optimization?

- Applicable to a wide variety of tasks
- Applicable to different architectures and devices
- Operates within the characteristics and constraints of the architecture/device
- Can learn topology and parameters (not just synaptic weights)
- Can interact with software simulations or directly with hardware
- Parallelizable/scalable on HPC

"Programming" via Spiking Neural Networks

Neuromorphic as a Co-Processor on HPC

Example Neuromorphic Use Cases on HPC

Example Neuromorphic Use Cases on HPC

Data from MINERvA (Main Injector Experiment for v-A)

- Neutrino scattering experiment at Fermi National Accelerator Laboratory
- The detector is exposed to the NuMI (Neutrinos at the Main Injector) neutrino beam
- Millions of simulated neutrino-nucleus scattering events were created
- Classification task is to classify the horizontal region where the interaction originated

Best Results: Single View

Convolutional Neural Network Result: ~80.42%

- 90 neurons, 86 synapses
- Estimated energy for a single classification for mrDANNA implementation: 1.66 μJ

Spiking Neural Network Result: ~80.63%

Neuromorphic Engine Control for Fuel Efficiency

- Developed a complete workflow to train a spiking neural network (SNN) to deploy to an FPGA-based neuromorphic hardware system for internal combustion engine control.
- SNN-based approach outperforms fixed control strategies in terms of fuel efficiency in simulation while still meeting acceptable performance metrics.
- Currently deploying SNN trained on Summit to neuromorphic hardware in-the-loop with engine at National Transportation Research Center.

Neuromorphic Engine Control for Fuel Efficiency

Neuromorphic Radiation Detection

- Radiation detection algorithms must be able to detect low-SNR anomalies in a very noisy and dynamic data environment.
- Neuromorphic computing enables the ability to combine the computational performance of machine learning with massive reductions in power consumption for this task
- K-sigma performance on DOE Urban Search Challenge: F1-Score: 0.080
- Current SNN trained with EONS performance: F1-Score: 0.436

F1Tenth: Autonomous Racing

- Fully autonomous 1/10th scale racing of Formula One (https://f1tenth.org/)
- Like full scale vehicles, the need for low size, weight, and power is critical
- Relatively inexpensive real-world demonstration of what neuromorphic computing can provide

F1Tenth: Autonomous Racing

Training Tracks

Physical Deployment

Physical Deployment

Example Neuromorphic Use Cases on HPC

Properties of Spiking Neuromorphic Systems

- Massively parallel computation
- Collocated processing and memory
- Simple processing elements that perform specific computations
- Simple communication between elements
- Event driven computation
- Stochastically firing neurons for noise
- Inherently scalable architectures

These properties are useful for more than just machine learning algorithms!

Calculating Shortest Paths

- Graphs are converted into networks
- Distances are converted to delays
- Spikes travel throughout the network and give single-source shortest path lengths

Sparse Binary Matrix-Vector Multiplication

- We demonstrated that binary matrixvector multiplication can be computed using networks of spiking neurons
- Next steps: Evaluate on real neuromorphic hardware

Modeling Epidemic Spread

- Neurons are individuals in a population
- Synapses are shared social connections
- Spikes are transmission of infection
- Parameters allow for different conditions

Original Citation Network

Graph Neural Networks

- Node classification task, without features
 - Citation networks as benchmark datasets for GNNs

	Cora	Citeseer	Pubmed
Node2Vec	0.71	0.48	0.70
Node2Vec-a	0.68	0.51	-
Planetoid-G	0.69	0.49	0.66
GraphSAGE	0.71	0.48	0.64
GCN	0.59	0.34	0.42
Neuromorphic	0.67	0.51	0.79

Corresponding Spiking Neural Network

Summary

- Neuromorphic computers are a new type of computer inspired by biological brains
- They are "programmed" using spiking neural networks, a more biologically inspired neural network
- We have successfully applied neuromorphic to a wide variety of applications, including scientific data analysis and robotics
- Neuromorphic computers are useful for more than just neural network computation!

Looking for postdoc or graduate opportunities?

- We're actively recruiting Master's and PhD students across the TENNLab research group
- We are also recruiting postdocs specifically in software, algorithms, and application development

Dr. Ahmed Aziz

Dr. Garrett Rose

Dr. Jim Plank

Dr. Katie Schuman

Work supported by:

Department of Energy

Air Force Research Lab

Thank you!

Questions?

Contact:

Email: cschuman@utk.edu

Website: catherineschuman.com

Twitter: @cdschuman

